Source code for polaris.validate

import os

import numpy as np
import xarray as xr


[docs] def compare_variables(variables, filename1, filename2, logger, l1_norm=0.0, l2_norm=0.0, linf_norm=0.0, quiet=True): """ compare variables in the two files Parameters ---------- variables : list A list of variable names to compare filename1 : str The relative path to a file within the ``work_dir``. If ``filename2`` is also given, comparison will be performed with ``variables`` in that file. If a baseline directory was provided when setting up the test case, the ``variables`` will be compared between this test case and the same relative filename in the baseline version of the test case. filename2 : str The relative path to another file within the ``work_dir`` if comparing between files within the current test case. If a baseline directory was provided, the ``variables`` from this file will also be compared with those in the corresponding baseline file. logger: logging.Logger The logger to log validation output to l1_norm : float, optional The maximum allowed L1 norm difference between the variables in ``filename1`` and ``filename2``. To skip L1 norm check, pass None. l2_norm : float, optional The maximum allowed L2 norm difference between the variables in ``filename1`` and ``filename2``. To skip L2 norm check, pass None. linf_norm : float, optional The maximum allowed L-Infinity norm difference between the variables in ``filename1`` and ``filename2``. To skip Linf norm check, pass None. quiet : bool, optional Whether to print detailed information. If quiet is False, the norm tolerance values being compared against will be printed when the comparison is made. This is generally desirable when using nonzero norm tolerance values. Returns ------- all_pass : bool Whether all variables passed the validation checks """ for filename in [filename1, filename2]: if not os.path.exists(filename): logger.error(f'File {filename} does not exist.') return False ds1 = xr.open_dataset(filename1) ds2 = xr.open_dataset(filename2) all_pass = True for variable in variables: all_found = True for ds, filename in [(ds1, filename1), (ds2, filename2)]: if variable not in ds: logger.error(f'Variable {variable} not in {filename}.') all_found = False if not all_found: all_pass = False continue da1 = ds1[variable] da2 = ds2[variable] if not np.all(da1.dims == da2.dims): logger.error(f"Dimensions for variable {variable} don't match " f"between files {filename1} and {filename2}.") all_pass = False continue all_match = True for dim in da1.sizes: if da1.sizes[dim] != da2.sizes[dim]: logger.error(f"Field sizes for variable {variable} don't " f"match files {filename1} and {filename2}.") all_match = False if not all_match: all_pass = False continue if not quiet: print(" Pass thresholds are:") if l1_norm is not None: print(f" L1: {l1_norm:16.14e}") if l2_norm is not None: print(f" L2: {l2_norm:16.14e}") if linf_norm is not None: print(f" L_Infinity: {linf_norm:16.14e}") variable_pass = True if 'Time' in da1.dims: time_range = range(0, da1.sizes['Time']) time_str = ', '.join([f'{j}' for j in time_range]) print(f'{variable.ljust(20)} Time index: {time_str}') for time_index in time_range: slice1 = da1.isel(Time=time_index) slice2 = da2.isel(Time=time_index) result = _compute_norms(slice1, slice2, quiet, l1_norm, l2_norm, linf_norm, time_index=time_index) variable_pass = variable_pass and result else: print(f'{variable}') result = _compute_norms(da1, da2, quiet, l1_norm, l2_norm, linf_norm) variable_pass = variable_pass and result # ANSI fail text: https://stackoverflow.com/a/287944/7728169 start_fail = '\033[91m' start_pass = '\033[92m' end = '\033[0m' pass_str = f'{start_pass}PASS{end}' fail_str = f'{start_fail}FAIL{end}' if variable_pass: print(f' {pass_str} {filename1}\n') else: print(f' {fail_str} {filename1}\n') print(f' {filename2}\n') all_pass = all_pass and variable_pass return all_pass
def _compute_norms(da1, da2, quiet, max_l1_norm, max_l2_norm, max_linf_norm, time_index=None): """ Compute norms between variables in two DataArrays """ da1 = _rename_duplicate_dims(da1) da2 = _rename_duplicate_dims(da2) result = True diff = np.abs(da1 - da2).values.ravel() # skip entries where one field or both are a fill value diff = diff[np.isfinite(diff)] l1_norm = np.linalg.norm(diff, ord=1) l2_norm = np.linalg.norm(diff, ord=2) linf_norm = np.linalg.norm(diff, ord=np.inf) if time_index is None: diff_str = '' else: diff_str = f'{time_index:d}: ' if max_l1_norm is not None: if max_l1_norm < l1_norm: result = False diff_str = f'{diff_str} l1: {l1_norm:16.14e} ' if max_l2_norm is not None: if max_l2_norm < l2_norm: result = False diff_str = f'{diff_str} l2: {l2_norm:16.14e} ' if max_linf_norm is not None: if max_linf_norm < linf_norm: result = False diff_str = f'{diff_str} linf: {linf_norm:16.14e} ' if not quiet or not result: print(diff_str) return result def _rename_duplicate_dims(da): dims = list(da.dims) new_dims = list(dims) duplicates = False for index, dim in enumerate(dims): if dim in dims[index + 1:]: duplicates = True suffix = 2 for other_index, other in enumerate(dims[index + 1:]): if other == dim: new_dims[other_index + index + 1] = f'{dim}_{suffix}' suffix += 1 if not duplicates: return da da = xr.DataArray(data=da.values, dims=new_dims) return da